Spike-Timing-Dependent Learning for Oscillatory Networks

نویسندگان

  • Silvia Scarpetta
  • Zhaoping Li
  • John A. Hertz
چکیده

We apply to oscillatory networks a class of learning rules in which synaptic weights change proportional to preand post-synaptic activity, with a kernel A(r) measuring the effect for a postsynaptic spike a time r after the presynaptic one. The resulting synaptic matrices have an outer-product form in which the oscillating patterns are represented as complex vectors. In a simple model, the even part of A(r) enhances the resonant response to learned stimulus by reducing the effective damping, while the odd part determines the frequency of oscillation. We relate our model to the olfactory cortex and hippocampus and their presumed roles in forming associative memories and input representations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spike timing dependent plasticity: mechanisms, significance, and controversies

Long-term modification of synaptic strength is one of the basic mechanisms of memory formation and activity-dependent refinement of neural circuits. This idea was purposed by Hebb to provide a basis for the formation of a cell assembly. Repetitive correlated activity of pre-synaptic and post-synaptic neurons can induce long-lasting synaptic strength modification, the direction and extent of whi...

متن کامل

Spike timing dependent plasticity: mechanisms, significance, and controversies

Long-term modification of synaptic strength is one of the basic mechanisms of memory formation and activity-dependent refinement of neural circuits. This idea was purposed by Hebb to provide a basis for the formation of a cell assembly. Repetitive correlated activity of pre-synaptic and post-synaptic neurons can induce long-lasting synaptic strength modification, the direction and extent of whi...

متن کامل

Delay Selection by Spike-Timing-Dependent Plasticity in Recurrent Networks of Spiking Neurons Receiving Oscillatory Inputs

Learning rules, such as spike-timing-dependent plasticity (STDP), change the structure of networks of neurons based on the firing activity. A network level understanding of these mechanisms can help infer how the brain learns patterns and processes information. Previous studies have shown that STDP selectively potentiates feed-forward connections that have specific axonal delays, and that this ...

متن کامل

Spike timing-dependent plasticity is affected by the interplay of intrinsic and network oscillations.

Spike timing-dependent plasticity (STDP) is a form of Hebbian learning which is thought to underlie structure formation during development, and learning and memory in later life. In this paper we show that the intrinsic properties of the postsynaptic neuron might have a deep influence on STDP dynamics by shaping the causal correlation between the pre- and the postsynaptic spike trains. The cell...

متن کامل

Learning, self-organisation and homeostasis in spiking neuron networks using spike-timing dependent plasticity

Learning, self-organisation and homeostasis in spiking neuron networks using spike-timing dependent plasticity.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000